令和6年能登半島地震により発生した崩壊の地質的特徴

~特に、崩壊群発地の地質と崩壊との関係について~

【謝辞】本報告は、渡壁 卓磨(森林総合研究所)・佐藤 昌人(防災科学技術研究所)、下村 博之(パスコ)・花川 和宏(アサ ノ大成基礎エンジニアリング)・末武 晋一(日本工営)・木村 一成(ケイジオ)との共同研究結果に基づくものです。

1. 調査地域の概要 2 令和6年1月1日16時10分、石川県能登地 方を震源とするM7.6の地震が発生 深度3以下 ・ 石川県の輪島市及び志賀町で震度7を観測 深度4 深度5弱 深度53 深度6弱 深度6强 深度7 珠洲 町野 能登 \wedge 5 10 km

令和6年能登半島地震の推定深度分布

*基図は、地理院地図より。推定震度分布は、内藤(2024)、防災科学技術研究所より

令和6年能登半島地震の推定深度と崩壊分布

*崩壊地、亀裂の分布は、令和5年度航空レーザ計測データ解析事業・業務報告書(林野庁)より。 これ以降の崩壊地・地すべりの分布は、全てこのデータを使用した。

能登半島の地質図 *地質図および凡例は、尾崎ほか「20万分の1地質図幅「輪島」(第2版)」(2019)に基づき作成

3. 調査結果

6

【本日、報告する崩壊が多発した地質】

①珪質シルト岩(飯塚・飯田層)
 ②流紋岩(粟蔵層)
 ③流紋岩質火砕岩(粟蔵層)
 ④デイサイト質火砕岩(宝立山層)
 ⑤安山岩質火山岩(高州山層)
 ⑥礫岩主体層(道下層)

①珪質シルト岩の崩壊(飯塚層・飯田層)

写真①剥がれた根系(深さ**1.0m**)

- 風化の進行による砂質、粘土質 はほとんど形成されていない。
- ・ クリープの進行に伴う礫質土が 約1m形成される。
- 根は、1m程度までしか侵入しておらず浅い。この深さは、基盤岩の深さに相当する。
- ⇒土層が1m程度と薄く、崩壊は 根系が届く1m程度で発生

写真②剥がれた根系(深さ**0.8m**)

9

写真③ トレンチ断面

- 粟蔵層は**黒雲母流紋岩の火山活動**に よって形成された地層である。
- 卓越する岩相から流紋岩火砕岩、黒雲 母流紋岩、凝灰質砂岩に区分される。
- ・ 黒雲母流紋岩は、岩倉山を中心に分布 する。
- 流紋岩質火砕岩は、黒雲母流紋岩を供 給源にすると考えられる。

流紋岩

流紋岩質火砕岩

③流紋岩質火砕岩の崩壊(粟蔵層)

崩壊地・地すべりは、林野庁(2025) 地質図は、吉川ほか「珠洲岬、能登飯田及び宝立山地域の地質」(2002)より

12

写真① 流紋岩質火砕岩の表層崩壊

③流紋岩質火砕岩の崩壊(粟蔵層)

写真② 流紋岩質火砕岩の表層崩壊を上から望む

③流紋岩質火砕岩の崩壊(粟蔵層)

流紋岩質火砕岩分布域での表層崩壊の模式図

尾根から崩れる崩壊

16

^{尾根付近のみが崩壊} ➡尾根部付近(高さ**20~30m**程度)のみ風化していることが多く、 **崩壊は尾根付近に集中**していた。

写真①崩壊地の風化帯構造

写真②崩壊地の尾根部の土層構造

●デイサイト質火砕岩と流紋岩質火砕岩の比較 ¹⁸

今後、詳細な地形解析と風化帯構造の調査を実施予定

⑤安山岩質火山岩の崩壊(高州山層)

斜する。

^{*}尾崎ほか、**2019**より

典型的な安山岩質溶岩の露頭

水中土石流堆積物と溶岩流の露頭

⑤安山岩質火山岩の崩壊(高州山層)

崩壊④:トレンチ作成箇所

⑥礫岩主体層の崩壊(道下層)

礫岩主体層の崩壊

- 礫岩、砂岩、泥岩の互層からなる急崖で崩壊が発生
 地層は緩く、若干受け盤
- ・ 崩壊は極表層のみで薄い

礫岩

4. 調査結果のまとめ

24

表層崩壊が多発した地質と崩壊の関係(案) ^{松澤ほか(2024)}

崩壊が多発した地層 ^{*1}		同化世	表層崩壊の発生場所と形態				
主な岩石	地層名	風化帯 の厚さ ^{*2}	崩壊 頻度 ^{*3}	崩壊 深さ	崩壊 場所	その他の特徴	
珪質シルト岩	飯塚層、飯田層	非常に薄い	中	1m以下が多い	急斜面や尾根	岩盤クリープが進行しや すい可能性あり	
流紋岩	西森國	非常に薄い	小	1m以下が多い	急崖で発生	節理が発達	
流紋岩質火砕岩	米咸宿	50m以上	高	1~2m程度	尾根~斜面下部	砂質な土層が形成	
デイサイト質火砕岩	宝立山層	20~30m 程度	高	1~2m程度	尾根で多発	粘土質な土層が形成	
安山岩質火山岩	高州山層	数m	中	尾根部は数m	尾根から発生	尾根付近に数mの風化帯 が形成	
礫岩主体の堆積岩	道下層	薄い	中	1m以下が多い	急斜面や尾根	尾根部のみが崩れること もある	

*1 地質の分布は、尾崎ほか(2019)より。

*2 風化帯の厚さは、現地調査から推定した。

*3 令和5年度航空レーザ計測データ解析事業・業務報告書(林野庁)の崩壊判読図と現地踏査から把握した。

- 大久保崩壊は、能登半島地震
 最大の崩壊である。
- ・地形解析と現地踏査から崩壊
 メカニズムおよび地質的素因
 を検討した。

* **XRD**分析を実施

*基図は、崩壊後のDEM(国土交通省北陸地方整備局提供(1m間隔))から作成した傾斜図

スレーキングしやすい特性をもつ

*基図は、崩壊後のDEM(国土交通省北陸地方整備局提供(1m間隔))から作成した傾斜図

28

1. 大久保崩壊の現地踏査結果(3/3)

連続的に分布する凝灰岩の転石 崩積土の末端付近に、帯状に凝 灰岩の転石が分布する。 ➡すべり面が地表に露出したと 想定

凝灰岩の拡大写真 * 米日の分析を実施

2. すべり面と想定される凝灰岩の分析

- 凝灰岩の透水係数は、3.2×10⁵~
 3.8×10⁶m/sであり、実質上不透水であることが分かった。
- 凝灰岩に含まれる粘土鉱物は、3試料とも類似しており、スメクタイトが主体であった。
- ・ 無処理では15.0Åのピークが、エチレン グリコール処理では膨張により17.0Å、 450℃の加熱処理では9.4Åに収縮することからスメクタイトと判定した。

すべり面と想定される凝灰岩の 物性値と透水係数

試料名	湿潤単位 体積重量	飽和単位 体積重量	乾燥単位 体積重量	自然 含水比	飽和度	透水係数
	g/cm ³	g/cm ³	g/cm ³	%	%	m/s
凝灰岩1	1.66	1.70	1.15	44.2	92.5	7.4×10^{-6}
凝灰岩2	1.56	1.66	1.07	46.1	83.2	3.2×10^{-5}
凝灰岩3	1.66	1.70	1.15	44.2	93.2	5.4×10^{-6}
凝灰岩4	1.55	1.60	1.06	45.4	90.8	3.8×10^{-6}
平均值	1.61	1.66	1.11	45.0	89.9	1.2×10^{-6}

すべり面と想定される凝火石 の**XRD**分析結果

1_すべり面と想定される凝灰岩(基盤岩) 2_すべり面と想定される転石の凝灰岩 3_すべり面と想定される転石の凝灰岩

4. まとめ

令和6年能登半島地震で発生した最大の崩壊である 「大久保崩壊」周辺について、地形解析と現地踏査お よび室内試験から崩壊メカニズムの検討を行った。調 査結果の概要を以下に示す。

【調査結果の概要】

- 「大久保崩壊」は、地震によって過去の地すべりの 一部が再移動および拡大崩壊したものである。
- 崩壊した地層は、流れ盤構造を持つ珪質シルト岩であり、凝灰岩をすべり面として発生したと推定した。
- 凝灰岩は、**膨潤性粘土鉱物であるスメクタイトを含み、実質上不透水**(3.2×10⁵~3.8×10⁶m/s)であった。

参考:調査団報告書の紹介

- 本日お話しした内容の大部分は、以下の報告書にまとめています。
- 興味がある方は、是非、ご購入下さい。

一般社団法人 日本応用地質学会

【前半の表層崩壊の話】 令和6年能登半島地震により発生した 崩壊の地質的特徴 松澤真、下村博之、花川和宏、末武晋 一、木村一成、渡壁卓磨、佐藤昌人 pp.37-44

【後半の大久保崩壊の話】 令和6年能登半島地震により発生した 大久保崩壊の地形・地質的特徴 松澤 真、渡壁卓磨、佐藤昌人、下村博 之、花川和宏 pp.71-77

定価: 5,000円 会員価格: 4,000円 A4版 オールカラー 334頁 ISBN978-4-931517-09-7・C3051